Skip to main content

Basic object detection in python using OpenCv and Numpy - by Dustbiin

5 String utilities methods - Dustbiin

1) Check mobile number is valid or not

 public boolean isValidMobile( final String inMobile )
    {
        Pattern pattern = Pattern.compile( "[6-9][0-9]{9}" );
        Matcher matcher = pattern.matcher( inMobile );
        if ( matcher.matches() )
        {
            return true;
        }
        else
        {
            return false;
        }
    }

2) Check PIN code is valid or not

  public boolean isValidPinCode( final String inStr )
    {
        final String str = inStr.trim();
        final String rule = "[0-9]{6}$";
        final Pattern pattern = Pattern.compile( rule );
        final Matcher matcher = pattern.matcher( str );
        if ( matcher.matches() )
            return true;
        else
            return false;
    }

3) Array to string with separator by comma

public String arrayToStringWithComma( String str[] )
    {
        String processedString = "";
        processedString = Arrays.toString( str ).replace( "[", "" ).replace( "]", "" ).replace( " ", "" );
        processedString = "," + processedString + ",";
        return processedString;
    }

4) Remove unused element from start and end of the string

public String removeCommaStartEnd( String str, String element )
    {
        if ( !str.equal("") && !element.equal("") )
        {
            str = StringUtils.removeStart( str, "," );
            str = StringUtils.removeEnd( str, "," );
            str.replace( " ", "" );
        }
        return str;
    }

5) String to Array

public String[] commaStringToArray( String str, String sepatator )
    {
        if ( !str.equal("") && !element.equal("") )
        {
             str = StringUtils.removeStart( str, sepatator);
             str = StringUtils.removeEnd( str, sepatator );
             str = str.replace( " "+sepatator+"" );
             System.out.println( "string is:" + str );
             String str2[] = str.split( sepatator);
             return str2;
        }
    }


Comments

Popular posts from this blog

Custom cell color in Excel Apache POI - By Dustbiin

Create custom color for cell background by using java color class Create custom color- XSSFWorkbook workBook = new XSSFWorkbook (); IndexedColorMap colorMap = workbook.getStylesSource().getIndexedColors(); Font tableHeadOneFontStyle = workbook.createFont();  tableHeadOneFontStyle.setBold( true ); tableHeadOneFontStyle.setColor( IndexedColors.BLACK.getIndex() ); XSSFCellStyle tableHeaderOneColOneStyle = workbook.createCellStyle(); tableHeaderOneColOneStyle.setFont( tableHeadOneFontStyle ); tableHeaderOneColOneStyle.setFillForegroundColor( new XSSFColor( new java.awt.Color( 255, 231, 153 ), colorMap ) ); tableHeaderOneColOneStyle.setFillPattern( FillPatternType.SOLID_FOREGROUND ); tableHeaderOneColOneStyle = setLeftRightBorderColor( tableHeaderOneColOneStyle ); tableHeaderOneColOneStyle = alignCenter( tableHeaderOneColOneStyle );

Create design by connecting dot's using opencv and numpy - by Dustbiin

Create basic design by using connecting dot's using your mouse- I have been create this by using mouse event check out the code below- use Python, OpenCv , NumPy import numpy as np import cv2 def click_event(event , x , y , flags , param): if event == cv2.EVENT_LBUTTONDOWN: print(x , " , " , y) font = cv2.FONT_HERSHEY_SIMPLEX strXY = str(x) + ' , ' + str(y) # cv2.putText(img,strXY, (x, y), font, .1, (255, 255, 0), 2) cv2.circle(img , (x , y) , 3 , ( 0 , 0 , 255 ) , - 1 ) points.append((x , y)) if len(points) >= 2 : cv2.circle(img , points[- 1 ] , 3 , ( 0 , 0 , 255 ) , - 1 ) # cv2.putText(img,strXY, points[-1], font, .1, (255, 255, 0), 2) cv2.line(img , points[- 2 ] , points[- 1 ] , ( 0 , 0 , 255 ) , 1 ) cv2.imshow( "Image" , img) points = [] img = np.zeros(( 512 , 512 , 3 )) cv2.imshow( "Image" , img) cv2.setMouseCallback( 'Image' ...

Basic object detection in python using OpenCv and Numpy - by Dustbiin

 Object detection in python by using OpenCv and Numpy -  Object Detection is a new vision technique using camera. It give us ability to identify objects in a cam video and also in an image.  with this kind of technique we identify the object on the basis of color, shape and size etc. And it is also use for count the object in an image or videos. Object detection is also user for tracking an object current location.  Code for basic object detection on the basis of color- import numpy as np import cv2 def nothing (x): print (x) #user for live cam object detection cap = cv2.VideoCapture( 0 ) cv2.namedWindow( 'Tracking' ) cv2.createTrackbar( 'LH' , 'Tracking' , 0 , 255 , nothing) cv2.createTrackbar( 'LS' , 'Tracking' , 0 , 255 , nothing) cv2.createTrackbar( 'LV' , 'Tracking' , 0 , 255 , nothing) cv2.createTrackbar( 'UH' , 'Tracking' , 255 , 255 , nothing) cv2.createTrackbar( 'US' , 'Tracking' , 255...